Steam Locomotive
Operator’s Manual
Before running your engine:

Prior to operation, be sure to perform a reset procedure on your engine as outlined in the Troubleshooting section of this manual. This will ensure optimal performance out of the box.

Table of Contents

Analog Operation...3

Analog Programming..12

DCC Operation...18

DCC Programming..28

Quantum Sounds..33

Special Operation / Troubleshooting................36

Maintenance..Insert
Basic Analog Operation

Broadway Limited Imports recommends that you get used to operating and having fun with your locomotive before exploring its more advanced features or programming options. Read through this section and be up and running with your new Quantum equipped engine is less than five minutes.

Running the Locomotive

Use an HO power pack with a standard direction switch. Set the switch to run your engine forward.

- Turn the throttle up slowly until you hear the Quantum System™ come on. You will hear Start Up sounds and the dynamo will rev up as the headlight comes on.
- Continue to turn up the throttle voltage until the locomotive starts to move in Forward. The directional headlight will come on bright. The locomotive will start out slowly due to special Quantum inertia effects that resist rapid increases or decreases in speed.
- As you slow the engine down by gradually reducing the throttle, Squealing Brake sounds occur as the locomotive comes to a stop.

Reversing the Locomotive

This simple operation is exactly the same as with standard locomotives.
- Bring the locomotive to a stop and turn the power all the way off.
- Flip the direction switch and reapply power to go in the opposite direction.

The optional steam tender reverse light comes on in reverse while the headlight switches to dim.

Whistle

Blow the authentic Steam Locomotive Whistle for short or long blasts – you control the duration.

- While the locomotive is moving, flip the direction switch to turn on the Whistle.
- Flip the direction switch back to shut off the Whistle.

The engine will not change direction when you blow the Whistle.

Note: If you flip the direction switch too slowly from one position to the
other, you can momentarily lose track power as the switch is being moved through its center position.

Bell

You can turn the Bell on and leave it on while you operate other functions on the locomotive.

- Turn the Bell **on** with a **Quick** flip-and-back operation of the direction switch.
- Turn the Bell **off** with a second **Quick** flip-and-back operation of the direction switch.

The Bell will stay on until you do another **Quick** flip-and-back operation of the direction switch to turn it off, or if you interrupt the track power. If you do a **Slow** flip-and-back operation, you will get a short Whistle hoot instead of the Bell. If you try to do a very short Whistle blast using a **Quick** operation, you will activate the Bell instead. If you have trouble doing the **Quick** flip-and-back operation, try holding the power pack in place with your other hand to keep the unit from slipping.

Note: When you toggle the Bell off, it will continue ringing briefly with less volume as the pneumatic clapper or swinging bell slows down, just like the prototype.
Starting the Locomotive

Most HO DC power packs with a standard reversing switch are suitable for Analog operation. Generally, modern electronic type power packs will provide better performance.

When operated with a standard DC power pack, your Quantum equipped steam engine behaves quite differently from other locomotives you may have operated. Unlike standard HO locomotives that start at very low track voltages, Quantum equipped engines require a minimum amount of voltage to operate the electronics. Also, the response to the throttle is much slower and more like a prototype locomotive.

- Turn the throttle up slowly until you hear the Quantum System™ come on with Air Let-off sounds, Air Pumps, Blower hiss and the Dynamo revving as the Headlight comes up to its “dim” setting. Optional Number Board Lights, Firebox Lights and Cab Lights will turn on. See a table summary of Directional Lighting operation in the DCC section of this manual.

- Continue to turn up the throttle voltage until the locomotive starts to move in Forward (this voltage is called V-Start). Steam exhaust (chuffing) will sound in sync with the motion of the drive wheels and in proportion to the engine’s Intrinsic Inertia and Load setting (see Sound of Power® on page 10) and the locomotive will slowly start to move. The Headlight will switch to bright.

Locomotive Inertia Effects

Your new locomotive is pre-programmed at the factory to use Regulated Throttle Control (RTC) in Analog (DC powered) operation. RTC makes your locomotive operate as though it has the mass and inertia of a prototype locomotive. As a result, your engine will resist starting up too quickly if at rest and will resist changes in speed once moving (see Standard Throttle Control™ (STC™) and Regulated Throttle Control™ (RTC™) on page 8). It takes a little practice to learn to move
the throttle slowly and wait until the locomotive responds. If you prefer that your locomotive respond almost immediately to throttle movements on your DC power pack, it may be reprogrammed to use Standard Throttle Control (STC). Under STC there is no Intrinsic Inertia. The Example on page 15 of this manual explains how to program your locomotive to use STC.

Note: If your locomotive has two sets of drivers, you will hear two sets of steam chuff sounds that will go gradually in and out of synchrony.

- As you slow the engine down by gradually reducing the throttle to a little below V-start, the steam chuff labored sound volume decreases, while Squealing Brake sounds occur as the steam locomotive comes to a slow stop.

If you need to turn your throttle up quite high to start your Steam Locomotive, V-Start can be adjusted for operation with your particular DC power pack (see Analog Programming on page 15). For recommended power packs, consult the *Quantum Analog Reference Manual* (Version 3) available at http://www.broadway-limited.com/

Doppler Effect

This effect changes the Whistle pitch and engine sounds as the locomotive passes.

- While the engine is moving toward the observer, flip the direction switch to turn on the Whistle.

- Wait at least one second while the Whistle is blowing.

- Flip the direction switch back and forth quickly so the Whistle does not shut off. You will hear the Whistle and other steam locomotive engine sounds shift in pitch as the locomotive passes by.

- Either flip the direction switch back to shut off the whistle, or continue with long or short Whistle operations. When you are finished blowing the whistle, the engine sounds will automatically return to normal after a few seconds. If the Bell was on, it will shut off just before the sounds return to normal.

Note: The faster the engine is moving, the greater the Doppler shift. Below 15 smph, there is no Doppler shift.
Special Whistle Ending Sound

Prototype engineers would often “play” their whistles by controlling the flow of steam to the whistle chamber. In particular, engineers often had a signature sound associated with how they ended their whistle sequences. Some Quantum sound sets have special Whistle Ending that can be activated using the direction switch to produce a unique sound effect similar to playing the whistle.

- Flip the direction switch to blow the Whistle for at least one second.
- The normal way to end the Whistle is to flip the direction switch back. To do the special Whistle Ending, add an immediate **Quick** flip-and-back operation.

Note: If you wait too long to do the **Quick** Flip-and-Back operation, the Bell might turn on instead.

Note: Your Quantum may not have special Whistle Ending sounds included.

Neutral

In Neutral, the locomotive will continue to make prototypical sounds appropriate to its resting state.

- Enter Neutral by **turning the throttle down below V-Start but not off and wait for locomotive to stop**. The Headlight switches to a steady dim and Reverse Light will turn off if entering Neutral From Reverse (NFR).
- You will hear a Short Air Let-off when the engine stops moving and enters Neutral, and a Long Air Let-off about three seconds later followed by Air Pumps and other background sounds such as steam boiler Pop-Off, boiler Blow Down, and Water Injector sounds.
- After the Air Pumps start, you can also use the direction switch to blow the Whistle or turn on or off the Bell.

If you cannot enter Neutral, or have difficulties with any of the operations, you may need to program your locomotive for optimal use with your particular power pack (see Analog Programming in next section).

Changing the Locomotive’s Direction without Turning off the Sound

You can use the power pack’s direction switch while the locomotive is in Neutral to change the engine’s direction.

- Put the locomotive in Neutral by bringing the throttle down below V-
start and wait for the locomotive to stop.

- Flip the direction switch after you hear the Short Air Let-off but before you hear the Long Air Let-off and the Air Pump sounds turn on. During this short time (3 seconds) the Whistle will not blow when you flip the direction switch.

- Turn up the throttle anytime thereafter to operate the locomotive in the opposite direction.

If you have waited until the Air Pumps start in Neutral and now wish to change direction, you can either:

1. Turn the power all the way off, change the direction switch and turn the power back on, or,

2. Flip the direction switch (the Whistle will come on) and then turn up the throttle. When the locomotive starts to move in the opposite direction, the Whistle will stop automatically and then hoot one more time if the direction is Forward for a total of two hoots. Or if the direction is Reverse, the Whistle will hoot two more times for a total of three hoots.

Note: To prevent the first Whistle hoot from being too long, do not delay in turning up the throttle after you have flipped the direction switch.

Standard Throttle Control™ (STC™) and Regulated Throttle Control™ (RTC™)

Quantum locomotives have two types of Analog throttle control available, Standard and Regulated. Both Standard Throttle Control (STC) and Regulated Throttle Control (RTC) will apply more power to the motor as a function of increasing track voltage beginning at the V-Start setting. RTC includes a motor speed control feature that prevents the locomotive from reacting quickly to changes in voltage or minor impediments such as misaligned track joints, tight curves, rough turn-outs, etc. An engine under STC may come to an unrealistic halt from a raised track joint or a drop in voltage while the same engine under RTC, with its Inherent Inertia, will continue at the same speed. RTC operates your engine as though it has the mass and inertia of a prototype locomotive; your engine will resist changes in speed once it is moving and will resist starting up quickly if at rest. You will be able to operate your locomotive at very slow prototypical speeds without having to adjust your throttle continually to maintain speed.
While small obstacles will not affect the engines speed under RTC, a continual force will slow your train down, just like the prototype. For instance, if your steam locomotive encounters an upward grade under RTC, it will eventually slow down. Providing more throttle will slowly accelerate it back to speed. The same engine under STC would quickly slow down or stop if it encountered an upward grade.

The type of throttle control also affects how your engine decelerates. Under STC, your engine will respond quickly to a reduction in track voltage. Under RTC, your locomotive will decelerate slowly as you bring the throttle down. If you bring the throttle down below V-Start, the engine will slowly come to a stop. You can, however, force an engine to slow down rapidly under RTC by bringing the throttle down quickly; this reduces the available power to the motor speed control circuit and forces the speed to decrease faster than RTC would normally allow. Once the locomotive slows down and regains normal RTC operation, it will continue to decelerate slowly according to its Intrinsic Inertia and Load setting. For instance, if your engine was running at top speed and you quickly reduced the track voltage to just below V-Start, where the locomotive would normally be stopped, the engine’s speed would at first slow down rapidly as you reduced the available power to the motor, and then would start decelerating at a rate determined by the RTC Intrinsic Inertia and Load setting and finally coast to a stop.

STC and RTC are selected under Analog Programming (see next section). The default is RTC.

Train Load

You can set your steam locomotive to have any of 16 different Load levels, which represent added inertia from rolling stock (see Analog Programming in next section). The higher the Load setting, the greater the inertia effect during acceleration and deceleration. Level 0 is the default, which is no Load.

Under STC, the level 0 Load setting will allow your locomotive to accelerate or stop as quickly as the internal flywheel will allow. Under RTC, level 0 will add no additional Load to the Intrinsic Inertia already provided by RTC. For any Load setting from 1-15, your steam locomotive will take longer to change speed under either STC or RTC. At level 1, it will take approximately 15 seconds more to achieve full speed at max throttle; at level 15, it will take over 3 ½ minutes to achieve full speed. In addition, at higher Load settings, your engine will decelerate more slowly as you decrease your
throttle.

Sound of Power™

The steam locomotive will produce Sound-of-Power labored steam sound effects if you have selected any of the Load settings from level 1 to 15. Under acceleration, the Chuffing sounds will be more labored until the locomotive has achieved its final speed where it will then produce standard sounds appropriate to its throttle setting. Under deceleration, the engine Chuffing sounds are less labored until it achieves its final speed where it will again produce standard steam sounds appropriate to its throttle setting.

Helpers

Prototype Helpers are locomotives that are used to provide extra power and/or braking for a heavily loaded train. These engines can be part of the head-end consist or as mid-train helpers or as pushers at the end of the train. Helper engines behave differently than the train’s lead locomotive. Their whistles and bells are usually not operated and their lighting options are different or not used at all.

When you make up your train using more than one locomotive, the Quantum System allows you to easily program how each engine will behave by selecting between a Lead engine, Mid Helper, End Helper, or Pusher. Each type of Helper engine has different lighting and sound characteristics as described in the table in the next section on Analog Programming.

Normal and Reversed Direction

Quantum also allows you to reverse the directional sense of your locomotive. This is normally not an issue with DC two-rail trains since all engines will go in the same direction whether they are facing forwards or backwards. However, certain features like Directional Lighting do depend on the directional sense. For instance, if you program your engine to be an End Helper for your consist, its tender Reverse Light operates when the engine is moving in Reverse and the Headlight is disabled. This is ideal for providing a Reverse Light for the consist. However, if this steam locomotive is facing backwards at the end of a consist, the Reverse Light faces forward and will be lit when the consist is moving Forward and there will be no Reverse Light for the consist. The “Direction” program feature will ensure that this End Helper’s backward facing Headlight will come on only when the consist is backing up and the forward facing Reverse Light
will not light at all. When making up a train with different Helper types, it is recommended that you also change its directional sense if the Helper is intended to be operated backwards within the consist. See “Option 4 Direction”, Analog Programming, next section.

Additional Analog Operation

Your Quantum steam locomotive is equipped with our new QARC™ (Quantum Analog Remote Control) Technology, which uses special remote control signals to operate different Quantum features without the need for complicated and expensive digital systems like DCC. With QARC technology, you can operate features that are otherwise available only in DCC plus features that are not yet available in DCC. QARC will allow you to: 1) turn on or off lights, 2) shut down and start up locomotives, 3) make up consists easily, 4) simplify Analog programming, 5) set System Volume or Mute while train is operating, 6) trigger Coupler Crash sounds, 7) operate prototype-like Air Brakes, 8) turn on Dynamic Brakes, 9) activate Status Report or Verbal Speedometer Readout, and operate many other features. The QARC System makes Analog operation more fun and more prototypical than DCC by eliminating the need to configure function keys. Every button on QARC controllers does exactly what it says. The only major difference between QARC and DCC is that you are not able to independently operate multiple trains on the same powered track section at different speeds at the same time.

The QARC controller, called Quantum Engineer, can be added to your existing Analog power pack. Wiring is simple: two wires go the variable DC output from the power pack and two wires go to the track. All features on the power pack remain the same including throttle and reverse switch control. See http://www.broadway-limited.com/ for further information.
Analog Programming

The Steam Locomotive can be Programmed Using a Standard Power Pack.

All advanced operations are easily programmed via your standard HO power pack. After entering programming (described below), features are selected and operated by using the direction switch.

<table>
<thead>
<tr>
<th>Program Option #'s (POP's)</th>
<th>Option Name</th>
<th>Message when Entering Option</th>
<th>Option Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System Volume (16, Max)</td>
<td>“Volume equals X”</td>
<td>Sets System volume (17 levels) where level 16 is maximum volume and level 0 is off.</td>
</tr>
<tr>
<td>2</td>
<td>Load (0, No Load)</td>
<td>“Load equals X”</td>
<td>Selects the starting and stopping momentum for both Regulated Throttle Control (RTC) and Standard Throttle Control (STC). Level 0 (no load), Level 1-15, increasing Load with acceleration to full speed from 15 seconds to 210 seconds in RTC and from 3 seconds to 45 seconds in STC.</td>
</tr>
<tr>
<td>3</td>
<td>Helper (Normal)</td>
<td>“Helper equals”</td>
<td>Selects Normal, Lead, Mid, End, or Pusher Helper in consists. Normal Engine has all sounds and lights enabled. Lead engine has all sounds enabled and Reverse Light disabled. Mid Helper has Whistle, Bell and all lights disabled. End Helper has Whistle, Bell and all lights disabled except Reverse Light. Pusher has Reverse Light on all the time as train warning light. Whistle, Bell and all other lights are disabled.</td>
</tr>
<tr>
<td>4</td>
<td>“Direction” (Normal)</td>
<td>“Direction equals X”</td>
<td>Selects if the features associated with the locomotive’s direction are “Normal” or “Reversed”.</td>
</tr>
<tr>
<td>8</td>
<td>V-Start (8.5v)</td>
<td>“V-Start equals X”</td>
<td>Sets track voltage where engine will leave Neutral. (See Example below)</td>
</tr>
<tr>
<td>9</td>
<td>V-Max (12v)</td>
<td>“V-Max equals X”</td>
<td>Sets track voltage where full power is applied to motor.</td>
</tr>
<tr>
<td>10</td>
<td>Throttle Mode (RTC)</td>
<td>“Throttle Mode equals X”</td>
<td>Selects between Standard Throttle Control (STC) and Regulated Throttle Control (RTC).</td>
</tr>
<tr>
<td>11</td>
<td>Programming Reset</td>
<td>“Warning – about to reset”</td>
<td>After next Quick or Slow Operation, Bell rings followed by a hoot to indicate locomotive returned to factory default.</td>
</tr>
<tr>
<td>12</td>
<td>About</td>
<td>Model number</td>
<td>Each Quick or Slow Operation provides progressive information about Quantum Model Number, Software Version, and Software Release Date.</td>
</tr>
<tr>
<td>13</td>
<td>Whistle Volume</td>
<td>“Volume equals X”</td>
<td>Customizes Whistle Volume (16 levels). Max is 15.</td>
</tr>
<tr>
<td>14</td>
<td>Bell Volume</td>
<td>“Volume equals X”</td>
<td>Customizes Bell Volume (16 levels). Max is 15.</td>
</tr>
<tr>
<td></td>
<td>Option</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chuff Volume</td>
<td>"Volume equals X" Customizes Steam Exhaust Volume. (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Blower Volume</td>
<td>"Volume equals X" Customizes Blower Hiss Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Air Brakes Volume</td>
<td>"Volume equals X" Customizes Air Brake Air Release Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Pump Volume</td>
<td>"Volume equals X" Customizes Air Pump Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Air Let-off Volume</td>
<td>"Volume equals X" Customizes Long Air Release Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Short Air Let-off Volume</td>
<td>"Volume equals X" Customizes Short Air Let-off Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Squealing Brakes/Flanges Volume</td>
<td>"Volume equals X" Customizes Squealing Brake/Flanges Volume (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Coupler Volume</td>
<td>"Volume equals X" Customizes All Coupler Sound Volumes (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Dynamo Volume</td>
<td>"Volume equals X" Customizes Steam Electric Generator (Dynamo) Volumes (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Pop-Off Volume</td>
<td>"Volume equals X" Customizes Steam Electric Generator (Dynamo) Volumes (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Blow Down Volume</td>
<td>"Volume equals X" Customizes Steam Boil Blow Down Volumes (16 levels). Max is 15.</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Injector Volume</td>
<td>"Volume equals X" Customizes Water Injector Volumes (16 levels). Max is 15.</td>
<td></td>
</tr>
</tbody>
</table>

Where "X" is the current value of the Program Option. Defaults are shown in parenthesis next to the option name. Options 5-7, 17-19, 21-25, 29, 31, 33-45, and 50 are reserved.

Entering Programming

Use this simple sequence to enter Programming using the direction switch.

1. Apply power and turn up the throttle to hear the sound system come on.
2. Within five seconds of powering up, turn on the Bell with a Quick flip-and-back operation.
3. Within three seconds of the Bell turning on, turn the Bell off with a second Quick flip-and-back operation.
4. Within three seconds, turn the Bell back on again with a third Quick flip-and-back operation.

If you delay too long after power has been first applied, the opportunity to enter Programming will time out and you will need to start again by
shutting off and reapplying track power.

Once you perform the three Bell operations after applying power, the Bell will shut off automatically and you will hear “Enter Programming” and the Headlight and tender Reverse Lights will flash alternately off and on.

Scrolling through the Program Options

- After entering Programming, you will hear an announcement of the first Program Option, “Option 1 - System Volume”.
- To access other Program Options, simply flip the direction switch to the opposite position and leave it there. Listen as each option number is announced in order.
- Flip the switch back and leave it there when you wish to stop at a particular option. After you stop at an option you will hear the option number and name announced. When you are scrolling through and stopping at Program Options, you are not making any changes. To make changes you must actually enter the Program Option.

Note: If you accidentally go to a higher option number other than the one you wanted, simply turn the power off, re-enter Programming and start again. Once you reach the last Program Option, it will continue to announce the last option number.

Entering a Program Option and Making Changes

After the verbal announcement of a Program Option, you can enter that option by performing a Slow or Quick flip-and-back operation of the direction switch. Upon entering a Program Option, you will hear the current setting for that option. For unused Program Options, you will hear “Reserved”. For any volume option, you will hear “Volume equals X” (where “X” is its current volume level setting). After a moment, you will hear the sound playing at its current volume.

Note: Entering a Program Option does not change the settings for that option; it only provides information about its current value. After entering the Program Option, additional Slow or Quick flip-and-back operations will program new settings as described in the above table. For all level adjustments, a Quick operation will decrease one level while a Slow operation will increase one level.

Note: Since “System Volume” is the first Program Option, you can use Quick or Slow operations immediately after entering Programming to
Moving on to Other Program Options or Leaving Programming

- Flip the direction switch at anytime to the opposite position, and leave it there. Quantum will first return to and announce the current Program Option and then automatically advance to on to higher options.
- Exit Programming anytime you want by turning the power off and back on again.

Example 1: Setting Throttle Mode (Program Option # 10)
This will determine whether your locomotive uses Regulated Throttle Control (RTC) or Standard Throttle Control (STC).

- Enter Programming after powering up your engine by turning the Bell on, then off and then on as described above.
- After the “Enter Programming” followed by “Option One - System Volume” announcement of the first Program Option, flip the direction switch and leave it there. You will hear the announcement “Option 1, 2, 3 … etc.”. Stop when you hear “ten” by moving the direction switch back. You will hear “Throttle Mode”.
- Use a Slow or Quick operation of the direction switch to enter this option. If the throttle mode is at its default value (RTC), you will hear “Mode equals Regulated;” otherwise, you will hear “Mode equals Standard.”
- Use a Slow or Quick operation of the direction switch to change the throttle mode. Repeated Slow or Quick operations will cause the Throttle Mode to alternate between its two possible values, “Regulated” and “Standard”.
- Once you have selected the Throttle Mode you wish to use, turn the throttle off. When you then power up again, your locomotive will be using the Throttle Mode you have just selected.

Example 2: Setting V-Start (Program Option # 8)
This will determine the voltage (and throttle position) where your engine will leave Neutral and move out.

- Enter Programming after powering up your engine by turning the Bell
on, then off and then on as described above.

- After the “Enter Programming” followed by “Option One - System Volume” announcement of the first Program Option, flip the direction switch and leave it there. You hear the announcement “Option 1, 2, 3 … etc.”. Stop when you hear “eight” by moving the direction switch back. You will hear “V-Start”.

- Use a **Slow** or **Quick** operation of the direction switch to enter this option. You will hear “V-Start equals X” where “X” is the track voltage value currently set to leave Neutral”.

- Use a **Slow** or **Quick** operation of the direction switch to activate this option. Hear the message “Set throttle to V-Start” and after three seconds the voltage will be announced. If you move the throttle, the new track voltage value is announced a few seconds later.

- Once throttle is set, use a **Slow** or **Quick** operation of the direction switch to start the procedure. The engine will move at a slow speed and the Bell will ring continually for about 25 seconds, indicating the correct value is being calculated. If the locomotive does not move during the procedure, return to the beginning of this option or start over and chose a slightly higher throttle setting.

- At the end of the process, the engine will stop moving and the Whistle will hoot, signifying the end of the operation and you will hear the message “V-Start = X” where “X” is the new setting.

- To leave Programming, turn the throttle off, and then power up for normal engine operation.

- Or continue to V-Max by moving the direction switch and waiting for the next Programming Option to be announced.

Example 3: Setting V-Max (Program Option # 9)

V-Max is set in the same manner as V-Start except after entering this Program Option, you will hear “Set throttle to V-Max” which is the position where you want the full track voltage to be applied to the motor (usually about 80% of full throttle). Then do a **Quick** or **Slow** operation to set V-Max.

Note: During the V-Max setting, the engine will not move as it does under V-Start.

Note: When double heading your Quantum equipped locomotives, make sure that both locomotives have similar speed/throttle characteristics by
adjusting V-Start and V-Max to prevent them from fighting each other. For more information, download the *Quantum Analog Reference Manual (Version 3)* from http://www.broadway-limited.com/
DCC Operation

These steps will allow you to start operating your Steam Locomotive immediately using any qualified NMRA command station.

1. Select engine number 3.
2. Set your controller to 128 (preferable) or 28 (acceptable) speed step range.
3. Start your locomotive immediately by pressing the F6 function key to hear the engine’s Start Up sounds. Directional Lighting System (Headlight and tender Reverse Light) will be off. Use the FL or F0 key to turn on the Directional Lighting.

When you reduce the throttle to zero, the engine will automatically enter Neutral when the engine stops. You will hear a Short Air Let-off when the engine stops moving and a Long Air Let-off about one second later followed by Air Pumps and other background sounds. The Directional Headlight will go dim.

The direction of your locomotive will change when you press the direction key.

Function Keys

The following table lists features that have been pre-assigned to your DCC function keys. Operation of these keys can be different in the Neutral state (locomotive stopped) and the motive states (locomotive moving in Forward or Reverse). After you have selected your locomotive, simply press any of the function keys listed below to produce the described effects.

<table>
<thead>
<tr>
<th>Function Key*</th>
<th>Forward and Reverse</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0 or FL or Headlight</td>
<td>Directional Lighting on or off</td>
<td>Directional Lighting on or off</td>
</tr>
<tr>
<td>F1</td>
<td>Bell on or off</td>
<td>Bell on or off</td>
</tr>
<tr>
<td>F2</td>
<td>Whistle or Whistle with Doppler Effect (see below)</td>
<td>Whistle on or off</td>
</tr>
<tr>
<td>F3</td>
<td>Coupler Crash/Coupler Fire</td>
<td>Coupler Arm or Coupler Fire</td>
</tr>
<tr>
<td>F4</td>
<td>Blower Hiss on or off</td>
<td>Blower Hiss on or off</td>
</tr>
<tr>
<td>F5</td>
<td>Dynamic Brake function on or off</td>
<td>Dynamic Brake function on or off</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>F6</td>
<td>Doppler</td>
<td>Start Up</td>
</tr>
<tr>
<td>F7</td>
<td>Brake Squeal/Flanges and Air Brakes</td>
<td>Brake Set - Long Air Let-off</td>
</tr>
<tr>
<td>F8</td>
<td>Audio Mute on or off</td>
<td>Audio Mute on or off</td>
</tr>
<tr>
<td>F9</td>
<td>Short Air Let-off</td>
<td>Shut Down</td>
</tr>
<tr>
<td>F10</td>
<td>Locomotive’s Verbal Speed Readout in SMPH.</td>
<td>Locomotive’s Verbal Status Readout</td>
</tr>
<tr>
<td>F11</td>
<td>Short Air Let-off (Number Boards)**</td>
<td>Blow Down (Number Boards)</td>
</tr>
<tr>
<td>F12</td>
<td>Short Air Let-off (Cab Lights)</td>
<td>Water Injector (Cab Lights)</td>
</tr>
</tbody>
</table>

* Quantum supports the new NMRA 0-12 function key standard; the old 0-8 standard is not supported.

** Features in parentheses indicate alternate assignments when available.

If you have a DCC command station that supports only the older 0 to 8 function key standard, you will have no way to initiate Shut Down in Neutral with these pre-assigned feature to function key mappings. There is an interim solution to this problem; by changing CV 41 from its default value of 32 to decimal 128, you can control Shut Down in Neutral from function F7 (instead of function F9) on your DCC command station. In Forward and Reverse, F7 will still control the locomotive Air Brakes.

Directional Lighting Operation (F0 or FL or Headlight)

The FL (or F0, or Headlight) key toggles the Directional Headlight/Reverse Light System on or off.

The defaults for Headlight and Reverse Light are off. When the FL key is pressed, you will hear the steam electric generator (dynamo) start up and the front head light will gradually increase in brightness as the dynamo revs up.

When toggled on, the Directional Lights come on according to the table below.
Directional Lighting Operation in DCC and Analog

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Neutral from Forward</th>
<th>Reverse</th>
<th>Neutral from Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlight</td>
<td>On</td>
<td>Dim</td>
<td>Dim</td>
<td>Dim</td>
</tr>
<tr>
<td>Reverse Light*</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

*Reverse light will not come on until dynamo is completely revved up.

Coupler and Coupler Crash Sounds (F3)

There are two ways to use the F3 key.

- As your engine is about to couple up to a string of cars, press the F3 key to trigger the crashing sound of engine coupling. Use the F3 key again as the engine moves out to trigger the same sound as the slack is taken up in the cars.
- Use the F3 key in Neutral to produce uncoupling sounds as you disconnect cars over uncoupler magnets. Press the F3 key once to produce the sound of the lift bar and coupling pin being raised. This also arms the uncoupling sound effect. Press the F3 key again while moving or in Neutral to trigger the sound of the coupler knuckle opening and air-lines parting.

Sound-of-Power™

Your steam locomotive will produce labored Chuffing sounds under acceleration and lighter Chuffing sounds under deceleration but only if CV 3, or CV 23 and CV 4, or CV 24 are set to non-zero positive values. The level of labored sounds is proportional to the values for these four CV’s, and how much the throttle is increased or decreased.

Under acceleration, the Chuffing sounds will be more labored until the locomotive has achieved its final speed where it will then produce standard sounds appropriate to its throttle setting. Under deceleration, the engine Chuffing sounds are less labored until it achieves its final speed where it will again produce standard steam sounds appropriate to its throttle setting.

Note: If your locomotive has two sets of drivers, you will hear two sets of steam Chuffing sounds that will go gradually in and out of synchrony.
Whistle and Bell Buttons (F2, F1)

Some DCC controllers have separate whistle and bell buttons along with function keys assigned to whistle and bell operation. The whistle is usually assigned to F2. The F2 key behaves differently than using the whistle button.

- Pressing the F2 key and releasing it will cause the whistle command to come on and stay on, until you press F2 again.
- Pressing the whistle button will blow the whistle only as long as you are holding it down.

Pressing the F1 key and releasing it will cause the Bell to come on and stay on, until you press F1 again. There is no difference in operation between the bell button and its corresponding function key.

Doppler Operation (F6)

With DCC, you can trigger the Doppler effect by quickly interrupting the whistle signal in the same way it is described under Analog control. Or you can use the function key dedicated to the Doppler effect.

- Start the Whistle and/or Bell by pressing and releasing their function keys.
- Press F6 to hear the Doppler shift. A few seconds after the whistle button is turned off with the F2 key the engine sounds return to normal.

Squealing Brake and Flange Sounds (F7)

- Quantum provides automatic brake squeal as an engine slows to a stop. The operator can also control squealing sounds for continuous and variable brake sounds for protracted stops or to simulate the sounds of squealing wheel flanges on curved track.
- Squealing Brakes come on automatically when the speed is reduced from high-speed travel (over 40 smph) to less than 20 smph.
- Pressing the F7 key when the engine is moving at any speed will manually activate Squealing Brake sounds, and repeated pressings while the Squealing Brake sounds are occurring will continue the sounds uninterrupted.

Note: If you slow the engine too quickly, the brake sounds will terminate abruptly when the locomotive stops and enters Neutral.

Note: If you lower your throttle to speed step 0 on a moving locomotive, the F7
key will apply Air Brakes as long as the locomotive continues moving. See next section.

Air Brakes (F7)

If you have selected any non-zero deceleration inertia or momentum value in CV 4 and/or CV 24, the F7 key can be used to apply Air Brakes to stop the engine more quickly than it would normally stop from the inertia settings. To use Air Brakes:

- Turn the throttle down to speed step 0 on a moving engine; this enables the F7 key to act as a brake.
- Press the F7 key. Hear a brief brake squeal sound and air being released from the brake lines continually. The longer the air is released the greater the braking action.
- Press the F7 key again to stop the air release. The train will continue to slow at the last braking value.
- If you want to apply more braking, press the F7 key again to release more air. When you reach the desired amount of braking, press F7 again to stop the air release.
- Turn up the throttle to any value above 0 to release the brakes; this returns the engine’s deceleration to a value determined by the sum of CV 4 and CV 24.
- If the engine is in Neutral when the F7 key is pressed, a long air release sound simulates setting the brakes. However, no braking effect is activated.

If the throttle is set to any speed step except 0, Air Brakes are not enabled; instead the F7 key will now manually activate Squealing Brake/Flange sounds but will not affect the engine’s deceleration.

Automatic Features with “Take Control” Operation

The Quantum System allows the operator to take control of certain automatic features by using their associated function key. Once you “Take Control”, the features will no longer have automatic operation and you will control their operation and their state with their function key commands. Automatic and Take Control operations are described in the table below.

Steam Locomotive “Take Control” Operation
• Take Control of Automatic Steam Blower with the F4 key to stop automatic operation and control whether the Steam Blower is on or off.

Regardless of the state of the Blower (on or off), if you press the F4 key, the steam Blower hiss will be set to on if the F4 key is “1” and off if the F4 key is “0” and Automatic Control will be disabled. Thereafter, the steam Blower hiss will respond only to the state of the F4 function. Automatic Control will be restored if the power is shut down and reapplied or if the F6 Start Up key is double pressed in Neutral (see the description of Start Up on p. 25).

Three Stages of Shut Down: 1. Disconnect, 2. Standby, 3. Total Shut Down (F9)

Engine Shut Down has three distinct stages that you can control. Each stage is entered by double pressing the F9 key.

Stage One: Disconnect

• Double press the F9 key in Neutral to enter Disconnect. You will hear a Long Air Let-off.

• To leave Disconnect, either double press the F6 Start Up key described in the Start Up section or double press the F9 key again to reach the next stage of Shut Down, Standby.

If you double press the F9 key in Neutral, the electric motor drive will be disconnected from the Quantum System. You will hear a Long Air Let-off after entering Disconnect, which represents the locomotive’s reverse lever being placed in the neutral position. Once in Disconnect, the throttle can be moved up and down without the steam engine moving. Instead, you will hear the sound of steam gradually being vented through the throttle. All function keys are active in Disconnect.

Note: There is no affect on the throttle Sound-of-Power from Dynamic Brake being on in Disconnect as there is in diesels.
Stage Two: Standby

- Double press the F9 key while in Disconnect to enter Standby. You will hear a Long Air Let-off followed by Directional Lighting turning off and steam Blower shutting down. The motor will remain disconnected. Air Pumps will remain on. In Standby, the engine will not respond to throttle or function keys. The three exceptions are the F6 Start Up Function Key, the F8 Mute Key (described below) and the F10 Status Key (described below).

- To leave Standby, either double press the F6 Start Up Key described in the Start Up section or double press the F9 key again to reach the final stage of Shut Down, Total Shut Down.

Note: Standby is ideal for leaving your engine(s) running on a siding. It leaves the locomotive steamed up with low-level background sounds, but the engine will not respond to accidentally changing the throttle setting or pressing the function keys.

Stage Three: Total Shut Down

- Double press the F9 in Standby to enter Total Shut Down. You will hear the Long Air Let-off.

- To leave Total Shut Down, double press the F6 key.

The Air Pumps will turn off, followed later by the sounds of Pop Off operating for about ten seconds followed by hiss that gradually trails off to silence. In Total Shut Down, the engine will not respond to throttle or function keys. The two exceptions are the F6 Start Up Function Key (described below) and the F10 Status Key (described below).

Note: Total Shut Down allows the operator to take the engine “off line” (turn off sounds, lights, ignore throttle settings and function commands) independent of the operating session; that is, the engine will still be “off line” when power is reapplied for the next operating session.

Note: If power is turned off at any stage of Shut Down (Disconnect, Standby or Total Shut Down) or during a Shut Down procedure, the engine will remember the last Shut Down stage it was at during power down, and will power up in the same stage. If Start Up is initiated during any of the above Shut Down procedures, Shut Down is aborted and the engine returns to normal operation.

Dynamic Brakes (F5)

Prototype steam locomotives do not have dynamic brakes. However, the
Dynamic Brake function has been included to make the Quantum steam engine consistent with other Quantum equipped locomotives in consists.

- Pressing the F5 key will set the steam exhaust Sound-of-Power to the lowest setting allowing the steam labored sounds to be consistent with other engines that do have Dynamic Brake sounds in multiple unit consists.
- Pressing the F5 key in Neutral will have no Dynamic Brake effect unless the locomotive is in Disconnect (see above).

The Dynamic Brake function automatically turns off when entering or leaving Neutral, or if the throttle is turned up or the speed of the locomotive drops below 7 smph. The Dynamic Brakes cannot be turned on in Forward or Reverse unless the engine is traveling over 8 smph.

Note: In contrast to Air Brakes (F7), Dynamic Brakes do not increase the deceleration rate specified by CV 4 and CV 24.

Start Up (F6)

If your steam locomotive is in any stage of Shut Down, you can return your locomotive to normal operation by double pressing the F6 key. Start Up will be different for each stage of Shut Down, but all will start up with a Long Air Let-off and will enter normal operation.

Start Up from Disconnect: If you double press the F6 key in Disconnect, the steam locomotive will produce a Long Air Let-off and the locomotive will enter normal operation.

Start Up from Standby: If you double press the F6 key in Standby, the steam locomotive will produce a Long Air Let-off, the Dynamo will start up and Directional Lighting will turn on (if previously on) and then the engine will enter normal operation.

Start Up from Total Shut Down: If you double press the F6 key in Total Shut Down, the steam locomotive will produce a Long Air Let-off, the Dynamo will rev up and the Directional Lighting will turn on (if previously turned “on” and a Normal Engine or Lead Helper), followed by the Air Pumps starting up, the steam Blower turning on and then the locomotive will enter normal operation.

Note: During any of the Start Up procedures, none of the function keys are active. If the throttle is turned up from zero during any of the above Start Up procedures, the Start Up procedure will abort and the engine will enter normal operation.
Note: Whenever a Start Up command is sent, regardless of whether the engine is in Shut Down or operating normally, the Quantum System will automatically restore all Automatic Control.

Mute (F8)

The Quantum System allows you to reduce the System Volume to a lower level or increase it back to its original setting using the F8 function key. This is useful when you need to reduce the sound to engage in a conversation or to answer the phone. If you have many trains operating at once, you can reduce the volume on all those that are running in the background of the layout and increase the volume of the closest engine. The Mute feature changes the sound gradually over a second or two, which allows the sound to increase or decrease realistically as the locomotive approaches or recedes from the observer.

- Press the F8 key in Neutral or Forward/Reverse to gradually decrease or increase the locomotive’s volume.

Note: Mute state is not maintained if power is turned off and back on; the locomotive will return to full volume setting.

Note: Mute Volume can be programmed in CV 51.1.

Status (F10)

Quantum provides verbal information about the engine’s current operating state when the locomotive is in Neutral or the engine’s current speed in scale miles per hour when the locomotive is moving.

- Press the F10 key in Neutral; the locomotive will verbally report first its currently enabled long or short loco ID followed by its consist ID if it has one, followed by its Shut Down state (Disconnect, Standby or Shut Down).

- Press the F10 key in Forward or Reverse; the locomotive will verbally report the locomotives speed in scale miles per hour.

Note: When Status Report or Verbal Speedometer Readout is activated, the locomotive’s sounds will reduce to one half their current volume settings during the verbal report and then return to normal volume when the report has ended.

Note: In a consist, all engines will simultaneously report their status when the F10 key is pressed.
Function Key Operation in Neutral

Some function keys used in Forward and Reverse will have different effects in Neutral:

- The F7 key produces Squealing Brake sounds for a moving engine but produces a Long Air Let-off in Neutral.
- Pressing F6 results in Doppler shift for a moving engine but activates Start Up in Neutral.
- Pressing F9 produces a Short Air Let-off in a moving engine but activates Shut Down in Neutral.

Note: Whistle, Bell, Doppler, Squealing Brakes and Neutral sounds are described in detail on page 33, in the Quantum System Sounds section of this manual.
DCC Programming

Most command stations currently available will program Quantum equipped locomotives in Service or Ops Mode. If your command station will not program in Service Mode, check with the command station manufacturer – some companies will give you a free upgrade. Also, see Special Operation and Troubleshooting on page 36.

Changing the System Volume Electronically in CV 51.0

You can change the volume either manually as described in the Special Operation and Troubleshooting section or electronically using CV 51.0 in DCC33. To change volume in Service or Ops Mode, do the following:

- Set CV 49 to 0.34
- Enter the System Volume in CV 51. The System Volume can be set to any value between 0 (no sound) and 127 (100%). The default System Volume is 127.

\textbf{Note:} When you change the System Volume, you will immediately notice the change in volume in Ops Mode.

Changing the Mute Volume Electronically in CV 51.1

To change the Mute Volume in Service or Ops Mode, do the following:

- Set CV 49 to 1.
- Enter the Mute Volume in CV 51. The System Volume can be set to any value between 0 (no sound) and 63 (100%). The default Mute Volume is 63.

\textbf{Note:} When you change the Mute Volume, and the locomotive is muted, you will immediately notice the change in Mute Volume in Ops Mode.

\textbf{Note:} The Mute Volume level will be the smaller of either the Mute Volume setting or one half the current System Volume. In other words, the Mute Volume will never be more than one half the System Volume.

Enable/Disable Whistle Triggered Doppler Shift (CV 51.2)

- Set CV 49 to 2.
- Set CV 51 to 0 to disable Whistle Triggered Doppler, set to 1 to enable Whistle Triggered Doppler.
Changing Individual Sound Volumes (CV 52.X)

To change the volume of Individual Sounds listed in the table below do the following:

- Set CV 49 to the Primary Index for the individual sound from the table below.
- Enter Volume level in CV 52 as follows: “0” = No sound, “1 – 15” sets volume from the lowest level at “1” to the highest at “15”, with volume levels at 2db increments.

<table>
<thead>
<tr>
<th>Primary Index entered into CV 49</th>
<th>Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Whistle</td>
</tr>
<tr>
<td>8</td>
<td>Bell</td>
</tr>
<tr>
<td>10</td>
<td>Chuff 1 (steam exhaust)</td>
</tr>
<tr>
<td>11</td>
<td>Chuff 2</td>
</tr>
<tr>
<td>16</td>
<td>Pump 1</td>
</tr>
<tr>
<td>17</td>
<td>Pump 2</td>
</tr>
<tr>
<td>19</td>
<td>Blower (hiss)</td>
</tr>
<tr>
<td>21</td>
<td>Long Air Let-off</td>
</tr>
<tr>
<td>22</td>
<td>Short Air Let-off</td>
</tr>
<tr>
<td>24</td>
<td>Squealing Brakes</td>
</tr>
<tr>
<td>26</td>
<td>Dynamo</td>
</tr>
<tr>
<td>29</td>
<td>Boiler Pop-off</td>
</tr>
<tr>
<td>30</td>
<td>Boiler Blow down</td>
</tr>
<tr>
<td>31</td>
<td>Water Injector</td>
</tr>
<tr>
<td>34</td>
<td>Coupler Sounds</td>
</tr>
</tbody>
</table>

See your Steam Model Specifications sheet for Individual Sound Volume default settings.

Chuff Interval Scale Factor (CV 56.12)

If the Chuff Sound is not exactly four per revolution or you want to change it to some other value, use the following procedure to change the Chuff interval.
• Set CV 49 to 12.
• Set CV 56 to any value between 0 and 255. Chuff rates are calibrated to be approximately the values shown in the table below. Adjust CV 56.12 value to be higher or lower than these recommended settings to decrease or increase the chuff rate.

<table>
<thead>
<tr>
<th>Approximate Chuffs/Revolution</th>
<th>Scale Factor</th>
<th>CV 56.12 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>.5</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>128</td>
</tr>
</tbody>
</table>

Reset all 40 CV’s to Factory Default Values (CV 56.128.255)

Note: This does not affect Analog settings, except volumes.
• Set CV 49 to 128.
• Set CV 50 to 255.
• Set CV 56 to 113. In Ops mode, you will hear 3 hoots when reset is completed.

Special ID Programming (CV 56.129)

If you cannot program your ID number in Service Mode and your command station prevents you from changing your ID in Ops Mode using CV 1, or CV 17 and CV 18, use the following alternative procedures to program your engine ID’s.

Procedure for Entering Short (Primary) Address in CV 56.129 in Ops Mode
• Set CV 49 to 129.
• Set CV 50 to 1.
• Set CV 56 to your Short Address (1 or 2 digits). Hear the address spoken back.
• If necessary, set CV 29, bit 5 to ‘0’ (or set CV 29 to 6 which is factory default) to enable your new Primary Address.

Procedure for Entering Long (Extended) Address in CV 56.129 in Ops
Mode.

- Determine the value of CV 17 and CV 18 for your Extended Address from the ID Table in your *Steam Model Specification Sheet* or follow instructions in CV 17 and CV 18 in the *Quantum DCC Reference Manual (Version 3)* to calculate a different ID number.
- Set CV 49 to 129.
- Set CV 50 to 17.
- Set CV 56 to the value of CV 17 from the table. There will be no verbal response.
- Set CV 50 to 18.
- Set CV 56 to the value of CV 18 from the table. Hear the new full Extended Address spoken out.
- Set CV 29, bit 5 to ‘1’ (or set CV 29 to 38) to allow operation with your new Extended Address.

Disable/Enable Verbal Announcements (CV 62)

In Ops mode, Quantum will automatically speak out the value of the CV you enter.
- To disable set CV 62 to 0; to enable set CV 62 to 1. Default is Enabled.

CV Inquiry with Verbal Feedback in Ops Mode (CV 64)

To inquire about the current value of any CV through Verbal Feedback in Ops Mode:
- Set CV 64 to the CV you wish to query. Hear the verbal message “CV ‘X’ equals ‘Y’”, where ‘X’ is the CV number and ‘Y’ is the value.

Note: If the CV has a Primary Index such as CV nn.mm (where nn is the CV number and mm is the Primary Index), set CV 49 to mm before you set CV 64 to nn. For example, if you want to inquire about the Bell Volume, which is CV 52.8, set CV 49 to 8 and set CV 64 to 52. You will hear, “CV five two point eight equals ‘Y’” (where ‘Y’ is the current value).

Note: If you enter either ‘17’ or ‘18’ in CV 64, you will hear the full Extended Address ID number spoken out.
Common NMRA Configuration Values (CV 29)

Each bit in CV 29 controls some basic operational settings for DCC decoders, including Extended Addressing, Speed Table Enable, Power Source Conversion, Lighting Operation, Locomotive Direction, and others. Default is 6.

The following table provides some of the more common values for CV 29 for the features indicated.

<table>
<thead>
<tr>
<th>Extended Addressing</th>
<th>Speed Tables</th>
<th>Power Conversion</th>
<th>28/128 Speed Steps</th>
<th>Reversal Direction</th>
<th>Decimal Value</th>
<th>Binary Value</th>
<th>Hex Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6</td>
<td>00000110</td>
<td>6</td>
</tr>
</tbody>
</table>

For more information, download the Quantum DCC Reference Manual (Version 3) from http://www.broadway-limited.com/.
Quantum System Sounds

Steam Chuff: The familiar steam chuff comes from steam exhausted from the steam chest through the smoke stack, which creates a powerful draft to feed the fire. Quantum Chuffing produces four distinct Chuff sounds per drive wheel set, a rhythm recognized by all steam fans.

Articulated Chuff: Articulated or Duplex steam locomotives have two sets of steam Chuff sounds that will go gradually in and out of synchrony. Most articulated engines had less weight over the front engine, which resulted in more slippage, causing the two engines to run at slightly different speeds.

Blower or Steam Engine Hiss: On a moving engine, the steam from the steam chest venting through the smoke-stack draws air through the fire box, keeping the fire healthy. When the engine is sitting still, blowers are often turned on to vent steam through the smoke stack to maintain the draft. Blowlers were often turned off soon after the engine started out. The steam Blower sound on steam engines will turn on gradually followed by a continual steam hiss.

Air Pumps: When an engine is sitting still, and air is used, the pumps come on at a steady beat to replace the air lost from pneumatically operated appliances. Once the pressure is up, the pumps only operate occasionally to maintain the pressure. Large steam engines may have more than one pump operating independently.

Appliance Air Release: Compressed air is used on engines for operating various appliances. You will hear both a Short Air Let-off or Long Air Let-off at various times.

Air Brakes: When prototype train brakes are applied, air is released from the brake lines to reduce the pressure. The more the pressure is reduced, the greater the braking. You will hear a continual air release sound from the steam locomotive model as braking is continually increased. The longer the air is released, the quicker the steam locomotive model will slow down. Once all the pressure is released, the engine will continue at maximum braking which can still require a long stopping distance depending on your Load settings. *DCC and QARC* Only.

Brakes Squeal: You can hear the brakes squeal on prototype locomotives when the engine is moving slowly and can become particularly loud when the wheels are just about to stop turning. Listen at slow speeds for automatic
Squealing Brake sounds and the final distinctive squealing sounds as the Quantum equipped steam locomotive slows to a stop.

Dynamic Brakes: Steam locomotives do not have Dynamic Brakes. When steam engines are operated today, they are often coupled to a diesel to provide dynamic brakes on down grades. If a Quantum steam engine is coupled to a Quantum diesel, and Dynamic Brakes are activated, the diesel Dynamic Brake effect will start up and the steam engine labored chuffing will reduce at the same time. Since prototype dynamic brakes are relatively ineffective at low speeds, the Dynamic Brakes will shut off automatically below 8 smph and steam engine Chuff will return to normal. **DCC and QARC Only.**

Whistle: The Quantum System uses authentic locomotive sounds whenever possible. All Quantum Whistles are engineered by our sound experts to give you the most authentic effects. If you blow the Whistle briefly, you will produce a realistic short Whistle sound or “hoot”. Some locomotive models have special Whistle Endings to allow the whistle to be “played” when desired.

Bell: Steam engines can have either a pull bell or pneumatically operated mechanical bell. With pull bells you will hear a different sound as the bell swings forward and backward producing the familiar ding-dong effect. Pneumatic bells produce a very repetitive ring and often much faster ring rate than a pull bell. During turn-on in Neutral, hear the pneumatic clapper gain greater throw with each stroke until it finally sticks the Bell. During shut down in Neutral, you will hear the Bell sound fade out for either pneumatic or pull Bells.

Doppler Run-by: The engine sounds get louder as the train approaches, then immediately drop to a much lower pitch and lower volume as the train passes by. With a little practice you can change the pitch exactly when and where you want. Doppler shift is based on the speed of the engine, so the sounds change more dramatically when the engine is running faster. After the Doppler shift has occurred and the Whistle is no longer being blown, the Bell shuts off automatically and locomotive sounds return to normal.

Coupler: To give you the most authentic coupler sounds, we have identified three distinct types of coupler activity. The first is when the coupler is Armed where you will hear the clanking sound of the coupler lift bar and coupler pin raising. The next is Firing the coupler, where you hear the opening of the coupler with the hiss of the air-lines parting. The third is when the locomotive couples up to its load of cars, and you hear the Coupler Crash.
as all the cars bunch together from the impact. *DCC and QARC only.*

Flanges: When a train enters a curve, the flanges on the wheels ride up on the inside of the rail and squeal. Recreate this squealing effect by pressing and releasing the Squealing Brakes/Flanges button quickly and repeatedly as necessary. *DCC and QARC only.*

Steam Pop-off: If there is too much steam pressure in the boiler, special pop-off valves, or safeties, on top of the engine release the excess pressure in a fury of hissing steam that often will blow for 30’ or more above the locomotive. This happens most often when the engine is sitting still, since the fire continues to build up steam that is not used. The Quantum Pop Off sound comes on for random lengths at random times in Neutral.

Steam Water Injector: The water used to make steam is replaced by water injectors at high pressure, to overcome the elevated pressure in the boiler. The sound of rushing water and steam hiss ends with a distinctive valve shut off. This sound comes on for random lengths of time and occurs randomly when the locomotive is in Neutral.

Steam Boiler Blow Down: As water evaporates, minerals and other residues settle to the bottom of the boiler. The fireman opens a valve to vent this material through a large pipe under the side of the cab onto the ground. Quantum’s Blow Down sound occurs at random in Neutral for varying lengths of time.
Special Operation and Troubleshooting

For a full description, see the Troubleshooting section in the Quantum DCC Reference Manual (Version 3) at http://www.broadway-limited.com/.

With some command stations, using the whistle button to activate the Whistle, and, while this button is held down, activating the F6 Doppler Key, will cause the Whistle to shut off instead of causing a Doppler shift effect.

We have experienced intermittent and independent whistle signal interruption with some DCC command stations, causing unexpected Doppler shifts. If this happens frequently, you may want to disable the Whistle Triggered Doppler (CV 51.2).

Reed Switch Operation with Magnetic Wand (Analog and DCC)

- The locomotive is equipped with a special reed switch located directly under the plastic tender roof that can be activated by the Magnetic Wand (enclosed) without having to disassemble the locomotive. The reed switch can be used to change the volume of your sound system or to reset the engine to factory defaults.

Manual Volume Adjustment (Analog and DCC)

- Locate the reed relay area on the locomotive’s tender as shown in the Steam Model Specifications sheet that was included with your model.
- Power up engine and leave in Neutral. Make sure Bell is not on.
- Place the enclosed Magnetic Wand over this reed switch area on the roof of the locomotive’s tender perpendicular to the track and wait as you hear the volume increase or decrease in incremental amounts as the Whistle hoots about every second. Move the wand away and again place it over the reed area to change the direction (louder or softer) of the volume change. Remove the wand when you reach the desired volume level.

Note: Volume can also be adjusted digitally using the programming methods described in the programming sections of this manual.

Resetting your Engine to Factory Default Values with Magnetic Wand
In case your engine’s sound and control system misbehaves and turning the power off for 15 seconds does not return it to normal operation, you can reset your locomotive to original factory values.

- Locate the reed relay area as shown in the *Steam Model Specifications* sheet.
- Turn off the power.
- Place the Magnetic Wand over the reed switch area and apply power and leave the wand there until you hear the word “reset”. Your engine is now reset. Remove the wand before the manual volume adjustment is activated.

The locomotive has now been returned to original factory defaults including all DCC and Analog values.

Turn your Locomotive Off or On using the Magnetic Wand (Analog Only)

Your locomotive can be selected (turned on) or deselected (turned off) using the Magnetic Wand. When the locomotive is deselected, it will remain unmoving and silent with lights off and will not respond to changes in track voltage or Analog whistle or bell signals or programming commands.

To shut off a locomotive:

- Enter Neutral and turn on the Bell.
- Place the Magnetic Wand over the reed switch area. The Bell will shut off followed by the locomotive shutting down and all lights will go off.

To turn on a locomotive:

- Make sure track power is applied. Place the Magnetic Wand over the reed switch area on the locomotive. The lights will come on followed by start up sounds. The engine is now selected and will respond to track voltage and all bell and whistle signals.

Note: You can turn off an engine in a consist even though it has been programmed as a Helper type with disabled Bell and Whistle sound. Simply send the bell signal command. Even though the Bell will not be heard, the Magnetic Wand will shut the locomotive down.

Using the Magnetic Wand makes it easy to turn engines off or on in Analog without the need for blocks. You can place engines on sidings and shut them off without having to switch power off in that track section. You can make
up consists by bringing up each locomotive one at a time. After you couple each engine to the consist, shut it down with the Magnetic Wand. When all engines are in place, select each engine in turn with the Magnetic Wand until all locomotives are running. You can now operate the consist as a single unit. When you break up the consist, you first deselect all engines one at a time and then select each one in turn as you disconnect and pull away from the consist.

High Voltage Circuit Breaker (Analog and DCC)

Your locomotive is designed to operate on normal HO track voltage supplied by most HO power packs. If track voltage exceeds 21.5 volts peak, the motor drive circuit will automatically shut down and the engine will coast to a stop, while the Quantum System alerts you to the problem through a continuous series of hoots. This built in safety feature protects Quantum and the electric motor from excessive voltage47.

- To restart your engine, reduce the track voltage until the hooting stops and the motors re-engage.

Program Track Operation (DCC)

This locomotive conforms to NMRA standards for program track operation. However, the Quantum System requires more current to operate than standard decoders and may not respond to the limited program track power from some command stations. If your program track will not respond properly, all CV’s in your locomotive can be programmed in Ops Mode. You can purchase a simple, inexpensive power booster (PowerPak™ by DCC Specialties) that will allow you to program on the program track with any DCC command station.

Reasons why Your Locomotive is Silent or will not Start (Analog and DCC)

In case your engine remains silent after power up and turning the power off for 15 seconds does not return it to normal operation, try the following suggestions to bring your engine back to normal sound operation.

- Make sure the engine has not been Muted with the F8 key.
- Check to see if your Manual Volume Control (using Magnetic Wand) or digital volume has been turned all the way down.
- You may have shut your engine down in DCC using the F9 key, which remains in effect in Analog or it has been shut down using the Magnetic Wand in Analog. Go back to DCC operation and start your engine with the F6 key49. Once started, you can return to DC or DCC.
operation. Or use the Magnetic Wand in Analog which selects and starts the engine if shutdown.

Note: The Magnetic Wand will not start your engine in DCC; you must use the F6 key. It will take a couple seconds after you double press the F6 key before you will hear the pump sounds start.

- If the above methods do not start your engine, reset your locomotive to factory default values as described above.
<table>
<thead>
<tr>
<th>Sounds & Features Common to Analog & DCC</th>
<th>Analog Features*</th>
<th>DCC Features*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whistle or Hoot</td>
<td>System Volume Programming</td>
<td>F0 or FL light control</td>
</tr>
<tr>
<td>Bell with shut down and turn on</td>
<td>Individual Sound Volume Control</td>
<td>F1-F12 Function Keys</td>
</tr>
<tr>
<td>effects</td>
<td>Regulated Throttle Control and Locomotive Inertia</td>
<td>14/28/126 speed steps (28)</td>
</tr>
<tr>
<td>Steam Exhaust (chuff)</td>
<td>Helper Type: (Normal) Normal loco, Lead Loco, Mid Helper, End Helper, Pusher.</td>
<td>Coupler Sounds</td>
</tr>
<tr>
<td>Articulated Chuff (optional)</td>
<td>Direction: (Normal) Normal/Reversed</td>
<td>Air Brakes</td>
</tr>
<tr>
<td>Automatic Blower Hiss</td>
<td>Power Pack Programming</td>
<td>Dynamic Brake Effect (for consists)</td>
</tr>
<tr>
<td>Doppler Shift</td>
<td>V-Max (12v)</td>
<td>Programming Modes Supported:</td>
</tr>
<tr>
<td>Steam Exhaust (chuff)</td>
<td>V-Start (8.5v)</td>
<td>Address Mode, Register Mode,</td>
</tr>
<tr>
<td>Articulated Chuff (optional)</td>
<td>Shut Down & Start Up</td>
<td>Service Mode, Direct Mode, Ops Mode</td>
</tr>
<tr>
<td>Neutral Sounds</td>
<td>with Magnetic Wand</td>
<td>Long Form & Ops Mode</td>
</tr>
<tr>
<td>Long Air Release</td>
<td>(optional)</td>
<td>Short Form</td>
</tr>
<tr>
<td>Short Air Release</td>
<td>Sound of Power™ Neutral State (Idle)</td>
<td>NMRA™ CV's supported:</td>
</tr>
<tr>
<td>Air Pump</td>
<td>Directional Lighting</td>
<td>1 Primary Address</td>
</tr>
<tr>
<td>Dual Air Pumps (optional)</td>
<td>Bright Headlight</td>
<td>2 V-Start</td>
</tr>
<tr>
<td>Sound of Power™</td>
<td>Reverse Light (optional)</td>
<td>5 V-High</td>
</tr>
<tr>
<td>Neutral State (Idle)</td>
<td>Cab Lights (optional)</td>
<td>8 QSI MFG's ID Number (113)</td>
</tr>
<tr>
<td>Directional Lighting</td>
<td>Manual Volume Control</td>
<td>3-4,7,17-25,29,33-46,66-95</td>
</tr>
<tr>
<td>Bright Headlight</td>
<td>with Magnetic Wand (optional)</td>
<td>QSI CV's supported:</td>
</tr>
<tr>
<td>Reverse Light (optional)</td>
<td>Reset to Factory Default</td>
<td>49 Primary Index</td>
</tr>
<tr>
<td>Cab Lights (optional)</td>
<td>with Magnetic Wand (optional)</td>
<td>50 Secondary Index</td>
</tr>
<tr>
<td>Manual Volume Control</td>
<td>QARC™ Operation** (with BLI QARC Controllers™)</td>
<td>51 Sound Control</td>
</tr>
<tr>
<td>with Magnetic Wand (optional)</td>
<td>Air Brakes</td>
<td>51.0 System Volume</td>
</tr>
<tr>
<td>Reset to Factory Default</td>
<td>Flanges</td>
<td>51.1 Mute Volume</td>
</tr>
<tr>
<td>with Magnetic Wand (optional)</td>
<td>Dynamic Brakes</td>
<td>51.2 Doppler (Enabled)</td>
</tr>
<tr>
<td>QARC™ Operation** (with BLI QARC Controllers™)</td>
<td>Engine ID's.</td>
<td>52 Individual Sound Volume</td>
</tr>
<tr>
<td>QSI CV's supported:</td>
<td>Consist ID's.</td>
<td>Control</td>
</tr>
<tr>
<td>49 Primary Index</td>
<td>Coupler Sounds</td>
<td>53 Function Output Mapping</td>
</tr>
<tr>
<td>50 Secondary Index</td>
<td>Extended Shut Down</td>
<td>56 QSI Configuration</td>
</tr>
<tr>
<td>51 Sound Control</td>
<td>Extended Start Up</td>
<td>56.12 Chuff Interval Scale</td>
</tr>
<tr>
<td>52 Individual Sound Volume Control</td>
<td>Explicit Lighting Control</td>
<td>Factor</td>
</tr>
<tr>
<td>53 Function Output Mapping</td>
<td>Controllable Flange</td>
<td>56.128.n Reset</td>
</tr>
<tr>
<td>56 QSI Configuration</td>
<td>Squeal Load on/off toggle</td>
<td>56.253 Version Build Information</td>
</tr>
<tr>
<td>62 Auto CV Verbal Feedback (enabled)</td>
<td>Blower on/off toggle</td>
<td>64 CV Inquiry Verbal Readout</td>
</tr>
<tr>
<td>64 CV Inquiry Verbal Readout</td>
<td>Verbal Engine Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade Crossing Signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audio Mute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Volume Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Additional Features</td>
<td></td>
</tr>
</tbody>
</table>

*Settings in parentheses indicate factory default

**QARC Technology allows commands to be sent to engines under Analog control to operate different Quantum features. With QARC technology, you can operate features that are otherwise available only in DCC plus features that are not yet available in DCC. The QARC controllers are inexpensive accessories that employ the QARC system. They can be added to your existing power pack to operate additional features on your Quantum equipped locomotive.
QSIndustries, Inc. Software License Agreement

1. Grant of License: QSIndustries, Inc. grants you, the owner, the right to use the software that is included with your Quantum system only with the locomotive that you purchased.

2. Copyright: The software is owned by QSIndustries, Inc. and is protected by United States copyright laws and international treaty provisions. Therefore, neither you nor anyone else may copy the software.

Proprietary Rights and Obligations

The structure and organization of the Software/Firmware are the valuable properties of QSIndustries, Inc. You will not make or have made, or permit to be made, any copies of the Hardware, Software/Firmware, code, or any portions thereof. You are not to modify, adapt, translate, reverse engineer, de-compile, disassemble or create derivative works based on the Hardware or Software/Firmware. Trademarks shall be used in accordance with accepted trademark practice, including identification of trademark owner’s name. The Quantum Hardware, Software and Firmware are covered by U.S. Patent No. 4,914,431; 5,184,048; 5,267,318; 5,394,068; 5,448,142; 5,633,985; 5,832,431; 5,896,017; 5,940,005; and US and Foreign patents pending.

No Other Rights

QSIndustries, Inc. retains ownership of the Quantum Hardware design and operating Software/Firmware code. Except as stated above, this agreement does not grant you any rights to intellectual property rights to the Quantum Software, Firmware or Hardware. The use of any trademarks as herein authorized does not give you any rights of ownership in that trademark.

© 2004 All rights reserved. Printed in S. Korea. Information in this publication supersedes that in all previous published material. The contents and the product it describes are subject to change without notice. QSI is a registered trademark of QSIndustries, Inc. Quantum, Quantum System, Sound-of-Power, Scale Sound, Regulated Throttle Control, QARC, are trademarks of QSIndustries, Inc. MRC is a trademark of Model Rectifier Corporation. All other trademarks are the property of their respective holders. QSI makes no representations or warranties with respect to this publication. In no event shall QSIndustries, Inc., be liable for any damages, direct or incidental, arising out of or related to the use of this publication. 11/04

QSIndustries, Inc.

Beaverton, OR
Special Operation and Troubleshooting

For a full description, see the Troubleshooting section in the Quantum DCC Reference Manual (Version 3) at www.broadway-limited.com.

With some Command Stations, using the whistle button to activate the Whistle, and, while this button is held down, activating the F6 Doppler Key, will cause the Whistle to shut off instead of causing a Doppler shift effect.

We have experienced intermittent and independent whistle signal interruption with some DCC command stations, causing unexpected Doppler shifts. If this happens frequently, you may want to disable the Whistle Triggered Doppler (CV 51.2).

Manual Volume Adjustment (Analog and DCC)

To adjust the volume by hand:

- Locate the Manual Volume Control on the roof of your steam locomotive tender as shown in the Steam Model Specification sheet that was included with your instructions.

- Use a small screwdriver to turn the volume clockwise to increase volume or turn it counterclockwise to decrease the volume.

Note: Volume can also be adjusted digitally using the programming methods described in the programming sections of this manual.

Using the Quantum Reset Jumper to Return Your Engine to Factory Default Values (Analog and DCC)

In case your engine’s sound and control system misbehaves and turning the power off for 15 seconds does not return it to normal operation, you can reset your locomotive to original factory values. The jumper is located as shown in the Steam Model Specification sheet that was included with your instructions.

- Turn off the power.
- Remove the jumper by pulling it up.
- Reapply power, the Whistle will sound with a series of three hoots after a few seconds.
• Turn power off, reinstall the jumper. The locomotive has now been returned to original factory defaults including all DCC and Analog values.

High Voltage Circuit Breaker (Analog and DCC)

Your steam Locomotive is designed to operate on normal HO track voltage supplied by most HO power packs. If track voltage exceeds 21.5 volts peak, the motor drive circuit will automatically shut down and the engine will coast to a stop, while the Quantum System alerts you to the problem through a continuous series of hoots. This built in safety feature protects the Quantum System and motor from excessive voltage.52

• To restart your engine, reduce the track voltage until the hooting stops and the motors re-engage.

Program Track Operation

Your locomotive conforms to NMRA standards for program track operation. However, the Quantum sound system requires more current to operate than standard decoders and may not respond to the limited program track power from some command stations. If your program track will not respond properly, all CV’s in your locomotive can be programmed in Ops Mode. You can purchase a simple, inexpensive power booster (PowerPak™ by DCC Specialties) that will allow you to program on the program track with any DCC command station.

Reasons why Your Locomotive is Silent or will not Start

In case your engine remains silent after power up and turning the power off for 15 seconds does not return it to normal operation, try the following suggestions to bring your engine back to normal sound operation.

• Make sure the engine has not been Muted with the F8 key.
• Check to see if your volume potentiometer or digital sound has been turned all the way down.
• You may have shut your engine down in DCC using the F9 key, which will also shut it down in Analog. Go back to DCC operation and start your engine with the F6 key. Once started, you can return to DC or DCC operation.
• If the above methods do not start your engine, use the reset jumper to initialize your locomotive to factory default values as described above.
(Footnotes)

1 See Locomotive Inertia Effects on page 3 for further description of this feature. Inertia effects can be programmed to Standard Throttle Control for more responsive operation.

2 Some electronic power packs do not have a reverse switch. Instead they have a reverse button, which does not cause a rapid change in track polarity to the track and is not suitable for Quantum operation. See the list of suitable power packs in the Quantum Analog Reference Manual (Version 3) at http://www.broadway-limited.com/

3 Your steam locomotive may not have all lights depending on the model.

4 It is not necessary to wait for the engine Start Up to finish before entering Forward. If you turn up the throttle, the Start Up sounds terminate and the steam locomotive will immediately go into normal Forward operation.

5 V-Start is set at 8.5 volts. It is important to note where V-Start is located on your throttle control to know where you will enter and leave Neutral.

6 Squealing Brakes occur if the engine exceeds 40 scale-mph (smph) and then slows down to below 20 smph.

7 If Regulated Throttle Control is enabled (see below) it is important to wait until the locomotive stops on its own. The engine’s electronic inertia will keep it moving even though you have reduced the throttle far enough below V-Start to stop the locomotive. In your attempt to stop the locomotive, do not try to reduce the throttle so far that all sounds go off.

8 In Neutral, a mechanical bell may have a distinctive turn on effect as the pneumatic clapper gains full motion to strike the bell. On pull bells, ringing will continue to sound as the bell slows to a stop.

9 On some power packs that have high internal resistance, the track voltage may rise slightly as the locomotive slows down and requires less power to operate. As the engine slows, you may need to reduce the throttle a little more to remain below V-Start.

10 Standard prototype railroad signaling is two hoots before starting in forward and three hoots before starting in reverse.

11 Some unloaded power packs produce excessive voltage at max throttle and will activate the Quantum high voltage circuit breaker. When this happens, your engine will stop and emit a series of hoots until the power is reduced to a lower voltage (see Troubleshooting, page 42).

12 POP is short for “Program Option”.

13 The verbal programming responses (such as “Enter Programming” etc.) have a minimum volume setting to provide programming information even when the system volume is turned all the way off.

14 You can set System Volume with the Manual Volume Control or with Programming or both. The Manual Volume Control will determine the range of volume control under Programming; that is, if you turn the Manual Volume Control down to say, 50%, you will not be able to increase the volume above the 50% value using Programming.

15 Some lights that are not controlled by the Quantum System may remain on.

16 Setting any volume in Analog will also apply to DCC and vice-versa.

17 Quantum systems have a built in voltmeter that measures the track voltage and announces its

44
value verbally. Depending on the power pack, this voltage may be slightly different than values measured by an external meter. However, since the Quantum Voltmeter uses its own values for throttle levels, it is the correct value for the system.

18 For earlier Quantum locomotives, the engine will only move at the very end of the V-Start calculation.

19 See section above: Moving on to Other Program Options or Leaving Programming.

20 V-Max should not be set too low when using RTC. For most MRC™ power packs, the best choice for V-Max is about 1.5 volts below the highest throttle setting as determined by the on-board Quantum Voltmeter.

21 Do not double-head Quantum engines with standard engines and then operate the Whistle or bell while engines are moving. The standard engine will reverse direction and fight with the Quantum engine.

22 Some lights such as firebox light, cab light, and number board lights may not be controllable by the Quantum system and remain on all the time.

23 Neutral sounds also include boiler Pop-Off, Water Injector and boiler Blow Down that turn on and off randomly for random periods of time.

24 Explicit lighting control features for Headlight and tender Reverse Light can be assigned to DCC function outputs. (See DCC Reference Manual, version 3)

25 Quantum uses constant voltage lighting that is independent of track voltage.

26 If you do not turn on either Whistle or Bell, the Doppler shift will still occur but will be less dramatic.

27 If the Bell was on, it will shut off prior to sounds returning to normal.

28 C4 and C24 determine the deceleration rate. Applying the brakes increases the deceleration rate temporarily.

29 If the brakes are set in Neutral, turning up the throttle automatically releases the brakes.

30 Double pressing ensures that Shut Down stages are not entered or exited accidentally. Double pressing is defined as two F9 commands sent within two seconds. Note that the F9 key may have to be pressed three times, due to the command station and locomotive having different initial states for F9.

31 It would be inconsistent for a steam locomotive to be working at full Sound-of-Power while Dynamic Brakes are being applied to other locomotives within the same consist.

32 Dynamic Brakes on prototype diesel locomotives are less effective and are seldom used at low speeds.

33 System Volume changes in DCC also apply to Analog and vice-versa.

34 You will hear the value spoken out (Ops Mode Only).

35 ‘X’ refers to the value in column 1 of the table, the Primary Index number that will be entered into CV 49.

36 Setting any Individual Sound Volumes in DCC will also apply to Analog and vice-versa.

37 Volume setting for Chuff 1 and Chuff 2 will also apply to Analog. However, since there is only one setting for Chuff Volume in Analog, POP 26 will change the volume level of Chuff 1, which will also apply to Chuff 2. When returning to DCC, both Chuff Volumes will be at the same value as set in Analog.

38 Volume setting for Pump 1 and Pump 2 will also apply to Analog. However, since there is only one setting for Pump Volume in Analog, POP 26 will change the volume level of Pump 1, which will also apply to Pump 2. When returning to DCC, both Pump Volumes will be at the same value as set in Analog.
This setting applies to both DCC and Analog operation. Consult the Quantum DCC Reference Manual (Version 3) to learn how to reset different groups of CV’s.

“113” is QSI’s Manufacturer’s ID Number assigned by the NMRA.

Entering “38” leaves the other configuration settings in CV 29 at factory default, but changes the ID to Extended Address type.

You will not hear “CV 62 = 0”.

This option is not affected by CV 62 (Disable/Enable Verbal Announcements).

QARC™ or Quantum Analog Remote Control™ uses special signals under Analog control to operate different Quantum features. With QARC, you can operate features that are currently available only in DCC in addition to features that are not yet available in DCC.

The wand does not need to touch the body. It can be held a reasonable distance from the roof area to prevent possibly marring the painted surface.

The high voltage circuit breaker will sometimes activate if the Load (inertia or momentum) feature is used. Most power packs have substantial series resistance, which lowers the track voltage when the engine is drawing power. However, with a Load setting, the engine does not require much power when it first starts moving. If the throttle is turned up all the way before the engine gains speed, the track voltage will be unusually high and can trigger the high voltage circuit breaker.

It may take a couple of tries to get it started.

Quantum Analog Remote Control (QARC) Technology

Not all Quantum equipped locomotives contain QARC Technology.

The high voltage circuit breaker will sometimes activate if the load (inertia or momentum) feature is used. Most power packs have substantial series resistance, which lowers the track voltage when the engine is drawing power. However, with a load setting, the engine does not require much power when it first starts moving. If the throttle is turned up all the way before the engine gains speed, the track voltage will be unusually high and can trigger the high voltage circuit breaker.
Introducing.... The Accessory That Makes DC Sound Operation a Cinch!

Sidekick HO, DC

Operating your Broadway Limited Imports sound equipped engines on your Analog DC layout has never been easier. Wire the new Sidekick HO, DC in-line with your conventional DC powerpack and your track for easy push-button sound operation and programming!

Setup in minutes, enjoy for hours.... Want to short-toot the horn or whistle on your Broadway Limited Imports engine? Push the red Horn button and release it. How about a long, drawn out horn? Press and hold down the horn button for as long as you want the horn/whistle to sound. Play it how you like it. The same goes for the bell. Play a ding or two, or leave it ringing... Or how about the doppler effect? Hold the horn button down while pressing the bell button simultaneously. It’s all up to you. And it’s all so easy with Sidekick HO, DC.

Programming in analog is greatly simplified with Sidekick HO, DC as well. Easy-to-follow button sequences make customizing your Broadway Limited Imports engine a snap.

Sidekick HO, DC is a great accessory for all DC powerpacks, including those with the ‘dead’ spot in the middle of the direction switch. No more stalling while activating sounds!

<table>
<thead>
<tr>
<th>stk#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Sidekick HO, DC Quantum 2-button Activator</td>
</tr>
</tbody>
</table>

MSRP - $29.99
Introducing...

Quantum Engineer

The most comprehensive control over your QARC equipped BLI locomotives is now available!

The new BLI Quantum Engineer is the key to unlocking your QARC equipped BLI locomotive’s full potential in analog DC! With 28 individual buttons, Quantum Engineer allows you to activate many sound and operation features previously only available in DCC!

Features:
• Horn Sound operation
• Bell Sound operation
• Brake Apply/Release operation (for actual slowing of unit)
• Load ON/OFF to mimic a preset load on the locomotive
• Dynamic Brake Sound operation
• Grade Crossing Sound operation for long, long, short, long horn sequence
• Doppler Effect Sound operation
• Flange Squeal Sound operation
• Coupler Crash/Open Sound operation
• Take Control of automatic features:
 - Number Board Lights, Headlight, Dim Headlight, Reverse Light, Hazard Light, Strobe Hazard, Cab Lights, Blower/Fans, Smoke
• Key-Press Volume Control including pushbutton Mute
• EZ-Programming
• Locomotive Status Report - for verbal information about the locomotive’s current operating state (disconnect / status / shut down / engine helper type, load level, load on/off status, throttle mode) when the locomotive is in neutral or the locomotive’s current speed in scale miles per hour when locomotive is in motion.

BLI Quantum Engineer, HO DC
1003 28-Button Sound / Operation / Programming Activator $59.99
28 Individual Buttons for the most comprehensive control over your locomotives in analog DC!

Order yours today!

Representative image shown. Actual product may look different.
Power Pack not included.
*Not for individual operational control of multiple locomotives.
**Not suitable for non-QARC enabled locomotives.
The Pioneer in factory sound equipped locomotives that operate on both standard DC and DCC.